

THE 6TH CYBERSECURITY EDUCATION & RESEARCH CONFERENCE

Privacy-Preserving Machine Learning

Aydin Abadi

Newcastle University

- Machine Learning (ML):
 - ML is a subset of artificial intelligence (AI) that enables systems to learn and make decisions from data without being explicitly programmed.
 - There are various types of ML, including:
 - Supervised ML: Learning from labeled data
 - Unsupervised ML: Finding patterns in unlabeled data
- Challenges with data **privacy** in ML:
 - As ML relies heavily on data, there is an inherent risk of privacy breaches associated with this process
 - ML requires accessing to raw data
 - If there are <u>many sources of data</u>, then different sources must share their data (often in plaintext), which can violate their privacy.

THE 6TH CYBERSECURITY EDUCATION & RESEARCH CONFERENCE

(Privacy-Preserving) Federated Learning

• Federated Learning (FL):

 FL enables training across decentralized devices without sharing raw data

 FL aims to preserve data privacy of different data providers while enabling machine learning

Source: DALL.E

- Federated Learning (FL):
 - In FL, devices (or any data contributors) compute local models based on their data and then share the local model updates with a <u>central server</u>
 - This server aggregates the updates to derive a global model that encapsulates the features of all the local data held by the individual devices

Federated Learning's General Procedure

1: Server:

2: Initialize global model θ

3: **for** each round k = 1, 2, 3, ..., K **do**

Broadcast θ to all participating devices

5: Clients:

6: **for** each client i (where $1 \le i \le n$) in parallel **do**

7: Receive global model θ

8: Compute local update g_i using local data

Send g_i to the server

10: Server:

11: Aggregate local updates: $G_k = \sum_{i=1}^n g_i$

12: Update global model: $\theta_{k+1} = \text{UpdateModel}(\theta_k, G_k)$

National Cyber Security Center

Kuwait

ENCE & TECHNOLOGY كلية الكويت للعلوم والتكنولوجية

Source: DALL.E

Problem of Data Duplication in Federated Learning

- In general, the quality of the training data significantly influences the accuracy of an ML model
- To ensure meaningful learning, the collected data must undergo a thorough data cleaning process
- Duplicated sequences are prevalent in text datasets
- Duplicated sequences can adversely affect the training process of Language Models [1]

Affects of data duplicates on machine learning

- Language models need clean and duplicate-free data for training
- Duplicate data can reduce model accuracy and cause issues such as:
 - Negative impact on model accuracy
 - Increased learning costs

Large language models memorize duplicate data, which reduces the quality and accuracy of learning

More <u>processing time</u> is required compared to situations without duplicate data

Challenges of removing data duplicates in federated learning

- Removing duplicate data in federated learning is **complicated** because direct data sharing is not possible
- Removing duplicate data is <u>easy</u> when <u>data privacy is not a concern</u>:
 - all devices send their data to the server, and the server finds and removes duplicate data
- In federated learning, it is not expected that every device will send its data to the server or another device without protection

Efficient Privacy-Preserving Multi-Party Deduplication (EP-MPD)

- We have developed a new protocol (called EP-MPD) that removes duplicate data in federated learning environments <u>without revealing sensitive information</u>
- Our proposed solution (EP-MPD):
 - improves learning accuracy by up to 19%
 - reduces learning time by up to 27%

G-PSI a building block of EP-MPD

- Our proposed solution EP-MPD is based on "Private Set Intersection" (PSI) protocols
- We introduced the new concept of Group Private Set Intersection (G-PSI)
- PSI is a cryptographic protocol that allows two or more users to privately share their data sets without revealing anything about the elements of the sets beyond the result

Background on PSI

- PSI is a cryptographic protocol that allows two or more users to privately share their data sets without revealing anything about the elements of the sets beyond the result
- A PSI lets mutually distrustful parties compute the intersection of their private sets such that nothing about the sets' elements, beyond the result, is revealed
- According to the PSI's definition, in this example:
 - during and after the computation, Bob must not learn 2 and Alice must not learn 4, 5, and 9.

Intersection of sets A and B: 1, 3 A \cap B

G-PSI a building block of EP-MPD

• In general, G-PSI allows each user (client) in a group to efficiently find the intersection of their set with the set of every user from another group, without learning anything beyond that

The main functionality

National Cyber Security Center

G-PSI a building block of EP-MPD

- We presented two separate protocols that securely meet the requirements of G-PSI:
 - **EG-PSI** ⁽¹⁾: only uses private key encryption and requires a Trusted Execution Environment (TEE) to find shared encrypted data, thus requiring very little processing time
 - **EG-PSI** (II) : uses public key encryption (Oblivious Pseudorandom Function) and requires a TEE to encrypt data. Although it requires more processing time, the TEE plays a smaller role during the protocol

G-PSI a building block of EP-MPD

- *Parties*. Trusted execution environment \mathcal{TEE} , clients in group $\mathcal{G}_0: \{\mathcal{C}_{0,1}, \ldots, \mathcal{C}_{0,m}\}$, and clients in group $\mathcal{G}_1: \{\mathcal{C}_{1,1}, \ldots, \mathcal{C}_{1,m}\}$.
- Inputs. Sets $S_{0,1}, \ldots, S_{0,m}, S_{1,1}, \ldots, S_{1,m}$, where each $S_{i,j}$ belongs to client $C_{i,j}, 0 \le j \le 1$ and $1 \le i \le m$.
- Outputs. $\vec{v}_{j,i}$ to $C_{j,i}$, where $\vec{v}_{j,i} = \begin{bmatrix} S_{j,i} \cap S_{1-j,1} \end{bmatrix}$.
- 1) *Setup*.
 - a) each client $C_{0,i}$ in G_0 agrees with every client $C_{1,l}$ in G_1 on a secret key $k_{i,l}$, by picking a random key $k_{i,l}$ and sending it to $C_{1,l}$. Client $C_{0,i}$ stores this key as $k_{i,l}$ while $C_{1,l}$ stores this key as $k_{l,i}$.
 - b) each $C_{j,i}$ takes the following steps:
 - i) encrypts its set elements under keys $k_{i,l}$ $(\forall l, 1 \leq l \leq m)$ as follows, $\forall e \in S_{j,i}$: $PRP(k_{i,l}, e) \rightarrow e'_{i,l}$. Let set $S'_{j,i}$ contain the encrypted set elements of $C_{j,i}$ and let set $T_{j,i}$ contains all triples of the form $(e'_{i,l}, k_{i,l}, l)$.
 - ii) sends $S'_{j,i}$ to \mathcal{TEE} and locally keeps $T_{j,i}$.

In Phase 1:

- a) Each user agrees on a private key with each other user in the other group
- b) Each user encrypts their data (set elements) using the private keys agreed upon with other users.

Each user sends all their encrypted data to the TEE

G-PSI a building block of EP-MPD

2) Finding Encrypted Intersection. \mathcal{TEE} takes the following steps for each $\mathcal{C}_{j,i}$.

- a) appends to an empty set, $R_{j,i}$, every ciphertext that satisfy the following conditions hold:
 - it appears more than once in the set $S = \sum_{j=0}^{1} \sum_{i=1}^{m} S'_{j,i}$.
 - it appears in set $S'_{j,i}$.
- b) sends $R_{j,i}$ to $C_{j,i}$.

In Phase 2:

- a) The TEE findsduplicateencrypted data
- b) The TEE sends the found duplicate data to the respective users

G-PSI a building block of EP-MPD

3) Extracting Plaintext Intersection. Each $C_{j,i}$ takes the following steps.

- a) constructs a vector $\vec{v}_{j,i} = [\vec{v}_{j,i,1}, \dots, \vec{v}_{j,i,m}]$, where each vector in $\vec{v}_{j,i}$ is initially empty.
- b) decrypts each element of $R_{j,i}$ as follows. $\forall e' \in R_{j,i}$:
 - i) retrieves decryption key $k_{i,l}$ and index l from $T_{j,i}$ using e'.
 - ii) calls $PRP^{-1}(k_{i,l}, e') \to e$ and appends e to l-th vector in $\vec{v}_{j,i}$.
- c) considers $\vec{v}_{j,i}$ as the result.

In Phase 3:

- a) Each user decrypts their duplicate data
- b) All share data (the intersection) is considered as duplicated data

Efficient Privacy-Preserving Multi-Party Deduplication (EP-MPD)

EP-MPD

The idea behind EP-MPD involves constructing a binary tree where the leaf nodes contain user identifiers

At each level, clusters are formed with two different groups of users, named G0 and G1

EG-PSI is applied to the sets of users sharing a cluster until we reach the root of the tree

EP-MPD

After each call to EG-PSI, users in group GO update their sets by removing intersections returned by EG-PSI

These updated sets are then used as input for the next call to EG-PSI

Federated learning equipped with deduplication

2024

 Each user locally removes duplicate data

- 2. All users collaborate to remove duplicate data
- 3. All users join the federated learning protocol

- *Parties*. A set of clients $\{C_1, \ldots, C_m\}$.
- Server. Holds the initial model θ .
- Inputs. Sets S_1, \ldots, S_m , where each S_i belongs to client C_i , $1 \le i \le m$, and m is a power of two.
- Outputs. A global updated model Θ .
- 1) Local Deduplication. Each client runs a deduplication algorithm on their local dataset. At the end, client C_i receives an updated dataset S'_i .
- 2) Global Deduplication.
 - a) All the clients participate in the EP-MPD as described in Figure 4.
 - b) Each client C_i gets updated set S_i'' , such that

$$\sum_{i=1}^m S_i'' = \bigcup_{i=1}^m S_i'.$$

- 3) Federated learning.
 - a) The server and clients agree upon an FL protocol for training.
 - b) The server initiates the learning by sharing the initial model θ with each client.
 - c) Each client C_i trains on their local dataset S_i'' and updates $\boldsymbol{\theta}$ to $\boldsymbol{\theta}_i$.
 - d) The clients and server aggregate the local models θ_i trained by the clients.
 - e) The server outputs the global updated model Θ for the next training round.

Our Solution EP-MPD

We implemented the EP-MPD protocol in Python

Our experiments showed that the maximum improvement in learning quality from deduplication is about 19%

Test set perplexity (PP) and improvement rate (IR) of perplexity after deduplication.

Model	Dataset	Duplication Percentage						Deduplicated
		30%		20%		10%		Deuuphtateu
		PP	IR (%)	PP	IR (%)	PP	IR (%)	PP
GPT-2 Medium	Haiku	3.73	5.36	3.69	4.3	3.6	1.94	3.53
	Rotten Tomatoes	2.4	3.75	2.36	2.18	2.35	1.7	2.31
	Short Jokes	3.95	5.31	3.89	3.85	3.83	2.34	3.74
	Poetry	5.46	8.42	5.59	10.55	5.33	6.19	5.00
	IMDB	12.81	4.57	12.71	3.75	12.5	2.0	12.25
	Sonnets	15.83	13.64	15.63	12.5	14.22	4.02	13.67
	Plays	34.31	18.27	34.88	19.61	28.12	_	28.04
GPT-2 Large	Haiku	3.27	8.86	3.26	8.58	3.23	7.73	2.98
	Rotten Tomatoes	2.65	16.98	2.6	15.38	2.53	13.00	2.2
	Short Jokes	4.11	7.78	4.02	5.72	3.95	4.05	3.79
	Sonnets	8.51	5.53	8.4	4.28	8.02	_	8.04

Our Solution EP-MPD

Our experiments also showed that deduplication reduces learning time by up to 27%

Total GPU training time (minutes) of all clients and improvement rate (IR) of time after deduplication.

Model	Dataset		Deduplicated					
		30%		20%		10%		Dedupiicated
		Time	IR (%)	Time	IR (%)	Time	IR (%)	Time
GPT-2 Medium	Haiku	111.92	22.96	105.03	17.91	95.62	9.83	86.22
	Rotten Tomatoes	162.79	21.7	151.54	15.89	138.76	8.14	127.46
	Short Jokes	396.62	27.85	338.69	15.51	313.35	8.68	286.15
	Poetry	114.28	22.65	105.48	16.2	96.85	8.74	88.39
	IMDB	2133.36	22.56	2006.94	17.68	1788.11	7.61	1652.04
	Sonnets	33.13	27.95	28.53	16.33	26.14	8.68	23.87
	Plays	31.48	22.9	29.38	17.39	26.95	9.94	24.27
GPT-2	Haiku	20.89	22.98	19.28	16.55	17.7	9.1	16.09
	Rotten Tomatoes	70.74	23.08	65.26	16.63	59.91	9.18	54.41
Large	Short Jokes	340.75	22.93	313.65	16.27	288.86	9.08	262.63
	Sonnets	13.91	20.92	12.89	14.66	11.87	7.33	11.0

Privacy-Preserving Data Deduplication for Enhancing Federated Learning of Language Models

Aydin Abadi

Newcastle University

